mesonic atom - meaning and definition. What is mesonic atom
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

What (who) is mesonic atom - definition

NEUTRAL COMPOSITE PARTICLE WITH SOME COMPONENTS NOT FOUND IN NORMAL ATOMS
Mesonic atom; Muonic atom; Hadronic atom; Antiprotonic atom; Sigmaonic atom; Antiprotonic atoms; Hadronic atoms; Mesonic atoms; Sigmaonic atoms; Exotic atoms; Mumesic atom; Pionic hydrogen; Pionic deuterium; Mu-mesic; Mu-mesic atom; Muonic hydrogen; Mesic atom; Pionic atom; Exotic compound; Exotic molecule; Pionic tritium; Hydrogen-4.1
  • Muonic helium, made out of 2 protons, 2 neutrons, 1 muon and 1 electron.

Exotic atom         
An exotic atom is an otherwise normal atom in which one or more sub-atomic particles have been replaced by other particles of the same charge. For example, electrons may be replaced by other negatively charged particles such as muons (muonic atoms) or pions (pionic atoms).
atom         
  • hydrogen-like]] atomic orbitals showing probability density and phase ('''g''' orbitals and higher are not shown)
  • These electron's energy levels (not to scale) are sufficient for ground states of atoms up to [[cadmium]] (5s<sup>2</sup> 4d<sup>10</sup>) inclusively. Do not forget that even the top of the diagram is lower than an unbound electron state.
  • 100]]) surface. The surface atoms deviate from the bulk [[crystal structure]] and arrange in columns several atoms wide with pits between them (See [[surface reconstruction]]).
  • The [[binding energy]] needed for a nucleon to escape the nucleus, for various isotopes
  • The Bohr model of the atom, with an electron making instantaneous "quantum leaps" from one orbit to another with gain or loss of energy. This model of electrons in orbits is obsolete.
  • Graphic illustrating the formation of a [[Bose–Einstein condensate]]
  • Atoms and molecules as depicted in [[John Dalton]]'s ''A New System of Chemical Philosophy'' vol. 1 (1808)
  • An example of absorption lines in a spectrum
  • The [[Geiger–Marsden experiment]]:<br /> ''Left:'' Expected results: alpha particles passing through the plum pudding model of the atom with negligible deflection.<br /> ''Right:'' Observed results: a small portion of the particles were deflected by the concentrated positive charge of the nucleus.
  • 2}}</sub>) of various isotopes with Z protons and N neutrons.
  • Periodic table showing the origin of each element. Elements from carbon up to sulfur may be made in small stars by the [[alpha process]]. Elements beyond iron are made in large stars with slow neutron capture ([[s-process]]). Elements heavier than iron may be made in neutron star mergers or supernovae after the [[r-process]].
  • A potential well, showing, according to [[classical mechanics]], the minimum energy ''V''(''x'') needed to reach each position ''x''. Classically, a particle with energy ''E'' is constrained to a range of positions between ''x''<sub>1</sub> and ''x''<sub>2</sub>.
  • Illustration of a nuclear fusion process that forms a deuterium nucleus, consisting of a proton and a neutron, from two protons. A [[positron]] (e<sup>+</sup>)—an [[antimatter]] electron—is emitted along with an electron [[neutrino]].
SMALLEST UNIT OF A CHEMICAL ELEMENT
Atoms; Atomic chemical; Atom and Atomic Theory; Atomic structure; Polyelectronic atoms; Bound-bound; Bound-bound transition; Structure of the atom; Multielectron atom; Ancient atom; Chemical atom; Chemical Atom; Number of atoms on Earth; Polyelectronic; Monoelectronic; Atomic system
(atoms)
An atom is the smallest amount of a substance that can take part in a chemical reaction.
N-COUNT
Atom         
  • hydrogen-like]] atomic orbitals showing probability density and phase ('''g''' orbitals and higher are not shown)
  • These electron's energy levels (not to scale) are sufficient for ground states of atoms up to [[cadmium]] (5s<sup>2</sup> 4d<sup>10</sup>) inclusively. Do not forget that even the top of the diagram is lower than an unbound electron state.
  • 100]]) surface. The surface atoms deviate from the bulk [[crystal structure]] and arrange in columns several atoms wide with pits between them (See [[surface reconstruction]]).
  • The [[binding energy]] needed for a nucleon to escape the nucleus, for various isotopes
  • The Bohr model of the atom, with an electron making instantaneous "quantum leaps" from one orbit to another with gain or loss of energy. This model of electrons in orbits is obsolete.
  • Graphic illustrating the formation of a [[Bose–Einstein condensate]]
  • Atoms and molecules as depicted in [[John Dalton]]'s ''A New System of Chemical Philosophy'' vol. 1 (1808)
  • An example of absorption lines in a spectrum
  • The [[Geiger–Marsden experiment]]:<br /> ''Left:'' Expected results: alpha particles passing through the plum pudding model of the atom with negligible deflection.<br /> ''Right:'' Observed results: a small portion of the particles were deflected by the concentrated positive charge of the nucleus.
  • 2}}</sub>) of various isotopes with Z protons and N neutrons.
  • Periodic table showing the origin of each element. Elements from carbon up to sulfur may be made in small stars by the [[alpha process]]. Elements beyond iron are made in large stars with slow neutron capture ([[s-process]]). Elements heavier than iron may be made in neutron star mergers or supernovae after the [[r-process]].
  • A potential well, showing, according to [[classical mechanics]], the minimum energy ''V''(''x'') needed to reach each position ''x''. Classically, a particle with energy ''E'' is constrained to a range of positions between ''x''<sub>1</sub> and ''x''<sub>2</sub>.
  • Illustration of a nuclear fusion process that forms a deuterium nucleus, consisting of a proton and a neutron, from two protons. A [[positron]] (e<sup>+</sup>)—an [[antimatter]] electron—is emitted along with an electron [[neutrino]].
SMALLEST UNIT OF A CHEMICAL ELEMENT
Atoms; Atomic chemical; Atom and Atomic Theory; Atomic structure; Polyelectronic atoms; Bound-bound; Bound-bound transition; Structure of the atom; Multielectron atom; Ancient atom; Chemical atom; Chemical Atom; Number of atoms on Earth; Polyelectronic; Monoelectronic; Atomic system
·vt To reduce to atoms.
II. Atom ·noun An ultimate indivisible particle of matter.
III. Atom ·noun Anything extremely small; a particle; a whit.
IV. Atom ·noun An ultimate particle of matter not necessarily indivisible; a molecule.
V. Atom ·noun A constituent particle of matter, or a molecule supposed to be made up of subordinate particles.
VI. Atom ·noun The smallest particle of matter that can enter into combination; one of the elementary constituents of a molecule.

Wikipedia

Exotic atom

An exotic atom is an otherwise normal atom in which one or more sub-atomic particles have been replaced by other particles of the same charge. For example, electrons may be replaced by other negatively charged particles such as muons (muonic atoms) or pions (pionic atoms). Because these substitute particles are usually unstable, exotic atoms typically have very short lifetimes and no exotic atom observed so far can persist under normal conditions.